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FOREWORD

This report was prepared by the Hypersonic Research Laboratory of

the Aerospace Research Laboratories, Air Force Systems Command,

United States Air Force, under Project 7064 entitled, "High Velocity Fluid

Mechanics."

The results given in this report are a by-product of a study of the effects

of Mach number gradients prevalent in wedge-shaped or conical nozzles

employed for hypersonic wind tunnel testing.
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I
ABSTRACT

The effect of high Mach number flows on test bodies can be estimated

reasonably well by using the Newtonian approximation. If the flow is like a

source flow then the effects of the ambient flow gradients on the flow para-

meters in the shock layer can be obtained by modifying t'Ve Newtonian formula.,

Freeman's theory is adopted in the present study and changes in surface

pressure and shock detachment distance of a two-dimensional blunt Lody are

obtained 1y using a perturbation scheme Based on the ratio of the axial

distance of a station on the body from the nose (which is the origin of the

coordinate frame) to the distance of the " source" location from the origin

as a perturbation parameter, first order corrections to the surface pressure

and the shock detachmert distance are derived.
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INTRODUCTION

The plane and axisymmetric hypersonic flow past blunt bodies have

been investigated as an inverse prcblem (shock shape being given) by

(1) (2)Chester and Freeman . The fluid is assumed to be in thermodynamic

equilibrium locally, and viscosity and heat conduction are neglected. The

governing flow equations for a perfect gas are expanded in powers of

(1- l)/(-+ 1) and M9, where y is the ratio of the specific neat.i and Mi.

is the Mach number of the free strearr. The first approximation correspond-

ing to y = 1 and N6= co yields a pressure formula identical wvith ; formula

(3)given by Busemann). Busemann pressure formula is often referred to as

"Newton-Busemann pressure" or ", Newtonian-centrifugal pressure. " In

regions of the flow where pressure is not a small fraction of its valuc at the

nose, the theory of " thin shock layers" of Chester aid Freeman yie~dv. con-

sistent expressions. However, at some distance downstream oi the stakna-ion

point, Freeman's theory becomes invalid as the pressure beconmes -. smallI
fraction of its value at the nose. A "singularity" appears vhich, fo•r example,

on a sphere will be located at a central half angle of 60o. Schneidez'3

(4)
theory removes this difficulty, ana _ý,(vides a more unifojrnmly valid solution.

The thin-shock layer assumption is not made in Ref. 4, and changes in lrzo-

city along streamlines is permitted. Schneider's theory, thereby, iniproves

Freeman's analysis. (Freeman has also modified his theory to give a

r (5)uniformly valid solution in the region of the singularity .) Freeman s



theory, however, describes the flow conditions near the stagnation region

reasonably weli. This theory is applied to give the shock detachment distance

when the flow is a two-dimensional source-type flow on a two-dimensional

blunt body. This condition corresponds to the flow in a wedge shaped nozzle

in a hypersonic wind tunnel. The shock stand-off distance increases from

its uniform-flow value due to Mach number gradient in the wedge shaped

nozzle. The decrement in the surface pressure due to the gradient effect is

also obtained by following a perturbation scheme.
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ANALYSIS

The flow in a wedge shaped nozzle can be considered to be a

source-like flow. The source is assumed to be located near the throat of

the nozzle. Any test body in the wind tunnel exposed to a source-like ' -per-

sonic flow will experience the effects of the Mach number gradients which

arise due to the angularity of the flow. Freeman's theory is extended to

obtain the corrections due to the flow angularities. Analysis of the adaption

of Freeman's results is described below.

The ideal source flow in two-dimensions leads to the equation

P, q, r - const, (1)

where P, and q, are ambient density and velocity respectively. The term

r represents the radial distance of the reference station. If the ambient

values are assumed to be quantities perturbed about their respective values

(indicated by barred quantities) at the nose, we write the equation as

(P + pL)(q + Aql) (ro + x) plQ ro • (2)

Here r is approximated by ro + x where ro represents the distance of

the nose from the throat, and x/ is the axial coordinate measured (from
I

the nose) of a reference station on the body. The approximation ro + x , r

is reasonable as we are concerned with a region in the vicinity of the

stagnation point. Equation (2) can be written as

_L& + L xt
= - -- 3)

q, ro



it being assumeK that higher powers of x1 / ro are small quantities and are,

therefore, negligible. Since in high Mach number flows the relative change

in axial velocity, Lq1 /j, , is small compared to the relative change in

density, t0/i, Eq. (3) becomes

-- •(4)

PI r.

Also from the relation

PI

we write

= - vx'(5)fPI ro

Equations (4) and (5) are now adopted in deriving the corrections due to the

ambient flow nonuniformi ies.

The Newtonian-centrifugal expression for the pressure behind the

shock is given by (Ref. 2)

sin(x)(x

Pl sin2 (x) + ko(X) JV I (t) cos C (0) dt (6)

x

The coordinate system is body oriented, x denoting the curv:)inear coor-

dinate along the body surface and y denoting the normal coordinate to the

body. The terms in Eq. (6) represent the following quantities:

PI = ambient density in the nonuniform flow
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Pis = pressure in the shock layer at the pcint of
intersection of the streamline 4- = const. and
the normal (to the body surface) at x. The
reference streamline Os intersects the shock
at a point P. whose body-coordinate is x.
Pressure at P5 behind the shock is given by
the Rankine-Hugoniot condition

U, = ambient velocity in the nonuniform case

a (x) - angle which the ambient-flow-streamline in the
nonuniform case makes with the shock at P.

(x) = angle of inclination of the ambient streamline
in the nonuniform flow case with the axis of
symmetry

ko geometric scale factor which is equal to unity
in the two-dimensional case

0o = the curvatuie of the shock (and hence of the
body according to the thin shock layer assump-
tion.) This is also given by - O'(x) where
0 (x) refers to the body slope (approximately
equal to the slope of the shock) at the point x.

Following Freeman's notation, we introduce a quantity Tj(x) which refers

to the distance of a point on the body from the line of symmetry. Therefore,

St(t) = il(t) in the two-dimensional case. In the equations hereafter, we

use the subscript " s" to denote quantities behind the shock.

Introducing the perturbation quantities in Eq. (6), we get

4NU2(x, Z) sin2 J71'(t)cos (+0P -)dt

Pi (i + ') LJ)(l= sin( - 1) ++

i.5e.



P1•(x,U )"+•,r 1 r -PlUs

PJ " (xJ ) + ---U= [sin 0 (X) J.L(x) cos aX) ]M 1ý o , .I

+ 0(x) f/ lm(t) [cos (t) + 11(t) sin 0 (t)] dt. (7)

In Eq. (7), it is assumed that angle pi is small and p• z f&,x /re. Also

powers higher than unity of the relative changes of the flow quantities are

neglected as are the cross products of the quantities aPls, Api and AU1 .

Equation (7) can then be written as

S- )+ 0(x) 74(t) p(t) sin 0 (t) dt

(8)

- p(x) sin 2ip (x) .

We note that LpA/1 -=p.x'/r° (xr being the coordinate of the reference

point on the body measured alrng the axis of symmetry from the nose.) Also

77x =)(x)/ro..

In Eq. (8), the term '-L. is given by the expression

, U•O = sin2 0.(x) + 0 (x) J171(t) cos o (t) dt.

It can be seen that Eq. (8) gives in the vicinity of the blunt stagnation region a

surface pressure correction which is approximately one half of the pressure

perturbation for a sharp edged body. This is in qualitative agreement with the

work of Gordon Hall(6 .

The equation for the streamlines in the nonuniform flow case is given by

sin ,t sinat(t) dty 1 (9)

Is / n (0 -I(x ) + sin (t) cob o (t) di abatco nent). - urth
t

where c (,Y - 1)/(y' + 1) (,y being the adiabatic exponent). Further
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P•x, 0) sin2(T (x) + #I* sin 0(t) cos r(t) dt (10)
P, U1, fs 4 t O 0t t(00

We note here that in the two-dimensional case

*I (t) - 0#(t) a sin 0 (t)

After introducing substitutions and approximations as were done earlier,

we observe that Eq. (10) becomes

S= sinZ4 (x) - p(x) sin 2 0(x)

+ 4I(x) s[.n (s) cos # (s) ds + W(s) sin2O(s)d (11)

We note further that in Eq. (9) the expression

R1 (x,t) = sinz a(x) + 01 ]sin4,(s) cos c(s)ds (12)
t

can be written as

Rl(x,t) = sinz P(x) - p(x) sin 2f(x)

+ 0 f(x)j sin y (s) cos 0 (s) ds + p.(s) sin2 o(s) ds] (13)

In view of Eqs. (12) and (13), Eq. (9) can be written as

R [sin' 0 (t) - gt(t) sing• (t) sin 2 0 (t) I dt

Y =E fR(x,t) (coszo (t) + At sin 29 (t) " 2 clog R'(x )] (14)

The equation for the shock is obtained by replacing t by x. We are

now able to evalaate the shock " stand-off" distance in the two-dimensional

case. We note that for small values of t, i(t) - t, and 0 = i / 2 - t/a,

where a is the radius of curvature of the nose. With these approximations,

7



Eq. (14) becomes
3 t t •t]

08 a 7-o cos- sin-] dt
a

• Rt~6 [csin3t t t 2 R "1 •5
f R' (x, t) sin i- + sin - 2 CogR (x, o)
0. a r0 a

where 1t(x) 1 7 ro( x/r when x is small,x 0

and
3 x x 1 2 x )

R' (x, t) - cosz - -cos- -- sin (x- t)
2 a a ro a 4aro

a 2x 2 x t 2
8r sina a + cos--- sin - 5 1 sin

o a a a aa0

After some algebra, Eq. (15) can be written as

Cos 3 t) dt x
= E + E F(x, (16)

o o

where

D( Cos 22i Co 2 i)(.2 + 21lg2 )

and
2 cos3  

x t

F a + 5x +x a 2x t t sit 2t

(coszx C2 4a 4 a 8 a 4a -4 a
a a) a 2

a
t 4 t - -sin -

t sin- o s4 oa
a a t t zt

- -2 t sin - cos
2in2t + 2 Elog a a

( ainz+2Elo 3 cos2 
- - 1

(S a

The first integral on the right hand side of Eq. (16) can easily be evaluated,

and in the limit as x->0, the value of the integral (which is aE /2 log(4/ 3E))

gives the shock stand-off distance in the uniform-flow case., The second
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integral on the right hand side of Zq. (16) is the correction to the stand-off

distance due to the ambient flow nonuniformities. The integral can be

evaluated in a straight forward manner, and the value, in the limit as x-40.

becomes

az 4
16r 0 log'5

We can, therefore, write the shock stand-off distance in the nonuniform case

as

8 +A8 (17)
a a a

where

8 E 4
a 2 log -L (in the uniform flow case) (18)

and

A 1 a /•_
A8 = 1 , (correction due to the ambient (19)
a 8 r flow nonuniformities)

Equation (19) gives the increment in the shock stand-off distance due to

angular divergence of the ambient flow. The increment can be quite significant

when the radius of curvature at the nose of the test body is large.
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